About Calorie Detection
The name calorie is used for two units of energy.
The small calorie or gram calorie (symbol: cal) is the approximate amount of energy needed to raise the temperature of one gram of water by one degree Celsius at a pressure of one atmosphere.[1]
The large calorie, kilogram calorie, dietary calorie, nutritionist's calorie, nutritional calorie, Calorie (capital C)[2] or food calorie (symbol: Cal) is approximately the amount of energy needed to raise the temperature of one kilogram of water by one degree Celsius. The large calorie is thus equal to 1000 small calories or one kilocalorie (symbol: kcal).[1]
Although these units are part of the metric system, they have been superseded in the International System of Units by the joule. One small calorie is approximately 4.2 joules (so one large calorie is about 4.2 kilojoules). The factor used to convert calories to joules at a given temperature is numerically equivalent to the specific heat capacity of water expressed in joules per kelvin per gram or per kilogram. The precise conversion factor depends on the definition adopted.
In spite of its non-official status, the large calorie is still widely used as a unit of food energy in the US, UK and some other Western countries. The small calorie is also often used for measurements in chemistry, although the amounts involved are typically recorded in kilocalories.
In scientific contexts, the term calorie almost always refers to the small calorie. Even though it is not an SI unit, it is still used in chemistry. For example, the energy released in a chemical reaction per mole of reagent is occasionally expressed in kilocalories per mole. Traditionally, this use was largely due to the ease with which it could be calculated in laboratory reactions, especially in aqueous solution: a volume of reagent dissolved in water forming a solution, with concentration expressed in moles per liter (1 liter weighing 1 kg), will induce a temperature change in degrees Celsius in the total volume of water solvent, and these quantities (volume, molar concentration and temperature change) can then be used to calculate energy per mole. It is also occasionally used to specify energy quantities that relate to reaction energy, such as enthalpy of formation and the size of activation barriers.[citation needed] However, its use is being superseded by the SI unit, the joule, and multiples thereof such as the kilojoule.