About 統計計算機
Puli College 為工程師及工程科系學生發展一套計算機,分別為基礎計算機、科學計算機、統計計算機,以及解方程計算機。
本機為統計型計算機,為輔助工程或科學之基礎統計而發展。統計型計算機具三項功能;
(1) 輸入n筆資料,計算統計量(平均值、標準差及偏度係數)
其中,n筆資料分別為x1,x2,x3,…,xn;
平均值xm定義為xm=(x1+x2+x3+…+xn)/n;
標準差σ定義為σ={[(x1-xm)2+(x2-xm)2+(x3-xm)2+…+(xn-xm)2]/(n-1)}0.5;
偏度係數sk定義為
sk={[(x1-xm)3+(x2-xm)3+(x3-xm)3+…+(xn-xm)3]╳n/(n-1)/(n-2)}/ σ3;
(2) 輸入標準單位Z,計算累加機率值CDF(Z)
此功能基於常態機率分佈假設,其中,標準單位Z定義為Z=(x-xm)/σ;CDF(Z)為常態分佈下,標準單位Z值所對應之累加機率。
(3) 輸入累加機率值CDF(Z),計算標準單位Z
此功能亦基於常態機率分佈假設,標準單位Z及累加機率CDF(Z)之定義同上。 Puli College for engineers and engineering students to develop a computer department, were based computer, computer science, statistics, computer, computer and solving equations.
This machine is a statistical model computer-aided engineering or statistical basis for the science and development. Statistics computed with three functions;
(1) n pen input data, calculate statistics (mean, standard deviation and coefficient of skewness)
Wherein, n pen data are x1, x2, x3, ..., xn;
Is defined as the average value xm xm = (x1 + x2 + x3 + ... + xn) / n;
Standard deviation σ is defined as σ = {[(x1-xm) 2+ (x2-xm) 2+ (x3-xm) 2 + ... + (xn-xm) 2] / (n-1)} 0.5;
Skewness coefficient is defined as sk
sk = {[(x1-xm) 3+ (x2-xm) 3+ (x3-xm) 3 + ... + (xn-xm) 3] ╳n / (n-1) / (n-2)} / σ3;
(2) Enter the standard unit of Z, the cumulative probability value calculated CDF (Z)
This feature is based on the normal probability distribution is assumed, which is defined as the standard unit Z Z = (x-xm) / σ; CDF (Z) for the normal distribution, the standard unit of Z values corresponding to the cumulative probability.
(3) Enter the cumulative probability value CDF (Z), calculate the standard unit Z
This feature is also based on a normal probability distribution assumption, (Z) of the definition of the standard unit Z and the cumulative probability CDF Ibid.